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Not All Graphs are Segment T-graphs

Noca ALON, MEIR KATCHALSKI AND EDWARD R. SCHEINERMAN

Given two line segments in the plane, we say they are in T-position if the line containing one
of the segments intersects the other segment. A segment T-graph has its vertices in one-to-one
correspondence with pairwise disjoint planar line segments so that two vertices are adjacent iff
they are in T-position. We give two proofs that not all graphs are segment T-graphs.

1. INTRODUCTION

Certain results on common transversals for families of disjoint segments in the plane
(see [6]), lead to the following definitions. Given two planar line segments, S, = P,Q,
and S, = P,Q,, we say that S, cuts (or shoots) S, (notation: $;— S,) provided that the
line through S intersects S,. We say that S, and S, are in T-position provided that
$;— S, or §,— §;. Note that this is equivalent to the statement that the end points of
one segment are on opposite sides of the line through the other segment.

A (finite, simple) graph G =(V, E) with V= {v,,...,v,} is called a segment
T-graph provided that one can assign to each of its vertices v; a segment S; in the plane
so that all segments are pairwise disjoint and v; is adjacent to v; (notation: v, ~v;) iff §;
and §; are in T-position.

Katchalski asked whether all graphs are segment T-graphs. Our mdin result is that
this is not the case:

THEOREM 1.1.  Not all graphs are segment T-graphs.

We give two proofs of this result, one involving the geometry of convex sets and
Ramsey theory, and the other based on a theorem of Warren [9] from real algebraic
geometry.

2. ENUMERATION OF STABBING LINES

Our first proof is based on the following enumerative result concerning lines and
convex sets in the plane.

Let « denote a set of n disjoint compact convex sets in the plane. Let B = of. We
say that a line L stabs % provided that L intersects every set in 4 but no set in &« — %,
that is B={Aeo: ANL+*}. Denote by Z(sf) the set of all subsets % c o for
which there exists a stabbing line. Finally, put o(n) = max{|2(«)|: | 4| =n}.

THEOREM 2.1. There exists a constant ¢ >0 such that
n n
4( )— =< S4< )+ ;
o) —cn o(n) )

Proor. We begin with the lower bound. Let & consist of » —2 horizontal line
segments Sy, . . ., S,_» and two vertical segments S;, Sz, as shown in Figure 1.

Note that the segments Sy, . .., S,_, are horizontal. Their left (respectively, right)
end points lie along a strictly convex curve. The segments S, and Sy are vertical. Their
7
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FIGURE 1. A family with |Z()| = 4(3) — cn.

lower end points are at the same height as the topmost horizontal segment (S;) and
they are very tall (as indicated by the arrows in the figure). In addition, S,
(respectively, Sg) is very far to the left (respectively, right) of the horizontal segments:
in the figure we have drawn them close to the horizontal segments for the sake of
clarity.

For each pair k, [ (with 1 <k </=<n —2) there exists subsets B = & of each of the
following types which is stabbed by some line:
(D) {S;:1siskori<sisn-2}U{S:};
) {(Sulsiskori<sisn-2;U{S.};
) {S;: k=is<Il}U{S};
(4) {Spk=sis{}U{S.}.

This gives

.

{17 43) -0

subsets which are stabbed by some line. (Note that, in fact, there are some more
subsets stabbed by lines, but the ones mentioned above suffice for our purposes.)

Now we consider the upper bound. For each pair of sets in &/ there exist four mutual
support lines; two (called support lines of type one) in which the sets are on the same
side of the line and two (called support lines of type two) in which the sets are on
opposite sides (see Figure 2).

FIGURE 2. Four mutual support lines.
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An e-expansion of a planar set A is a superset of A containing all points in the plane
which are no further than a distance ¢ from A. The expansion of a compact convex set
is still compact and convex. Observe that since our sets are compact, they may be
expanded by a sufficiently small amount with the expansion perhaps adding sets to
(), but never removing sets from Z(sf). By expanding the sets in & by varying
small amounts, we lose no generality in assuming that all support lines are distinct and
no two are parallel.

For each & € 2 () of cardinality at least two, we find two ‘extreme’ lines [, and /; in
the following manner. Choose, arbitrarily, a line separating two members of & and
choose a co-ordinate system in which this line is the x-axis. Clearly, in this co-ordinate
system, any line that stabs % contains points above and below the x-axis. Orient each
such line / from bottom to top, and let a(!) be the angle between the positive x-axis and
the oriented line /. Define:

a, = inf{a(l):"l stabs %} and a, = sup{a(/): / stabs %}.

Let D be a large disc containing all the sets in &. By the definition of @, a, and by
compactness there are lines {p;} and {q;} that stab B so that p; N D converges to
lyN D and g; N D converges to [, N D, for some two lines [, and /; that satisfy a(ly) = a,
and a(l,) =a;. Clearly, as all the sets are compact, both /, and /; intersect all the
members of % (and possibly some other sets as well). One can easily check that each of
I, and I, is one of the 4(3) support lines defined by pairs of sets of &f. Moreover, a
support line of type one defined by the sets A and B can be obtained onily if either
(Ae®B and B ¢ B) or (A¢ B and B € B). This is because otherwise the line can be
slightly rotated to any direction to obtain another line that stabs %, contradicting the
definition of a4 and a,. Similarly, a support line of type two defined by the sets A and B
can be obtained only if both belong to & or if both do not belong to 9. Consequently,
every support line is obtained at most twice, and as for each B € X() (with [B| = 2)
we obtain two extreme lines: we conclude that the number of sets of cardinality at least

two in (&) is at most
2:40)_y(7)

2 2

Finally, one adds n to the upper bound to account for the % of cardinality 1. This
completes the proof. [

REMARK 2.2. The main result of Brisztriczky and Pach in [2] is that if (i) &/ is a
family of m pairwise disjoint compact convex sets in the plane, (ii) » =3 and (iii) for
every subset B c o of cardinality |%| = n =3 we have B € (), then m < n + 46. By
Theorem 2.1 (and its proof) this can be improved to m <n + 2 for any n = 12. Indeed,
if m = n + 3 then, by the proof of Theorem 2.1,

(n iz 3) (n L 3)
=4
3 2
(since the number of sets of cardinality n in X(«) for & of cardinality n 4+ 3 cannot

exceed 4(”37)). This gives n=<11. The bound for smaller values of n can also be
improved, similarly, using the fact that () <4(}) for every I <m.

3. RaMsey THEORETIC PROOF OF THEOREM 1.1

We use the following result from Ramsey theory, due to Nesetril and Rodl ([8]; see
also [5], p. 103).
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THeOREM 3.1 For every positive integer r and every bipartite graph G, there exists a
bipartite graph H such that for every r-coloring of the edges of H, there exists in H an
induced copy of G in which all the edges have the same color (induced monochromatic

copy of G).

First ProOF OF THEOREM 1.1. Let Gy be the bipartite graph (X U 'Y, E), where

X={XI,X2,...,X,,}
and
Y={ysAc{l,...,n}, A%}
Thus | X| =n and | Y| =2" — 1; the elements of Y are indexed by the non-empty subsett
of {1,...,n}. Forx;e X and y, € Y put
X~y i €A

Let G be formed by taking two disjoint copies of G, and adding a single edge from
one specific vertex in one copy of G to its ‘twin’ in the other copy. Note that G is
bipartite.

Finally, let H be a bipartite graph (the existence of which is guaranteed by Theorem
3.1) such that any two-coloring of the edges of H contains an induced monochromatic
copy of G. We claim that H is not a segment T-graph.

Suppose H were a segment T-graph and fix a representation of H by segments in the
plane. Since H is bipartite, let UU W be a partition of the vertices of H int
independent sets. Color the edges of H as follows. For uw € E(H) with u € U and
w e W, color uw RED if S,— §,,; otherwise, (if S,,— S,) color uw BLUE.

By construction, H contains an induced copy of G in which all edges are (without
loss of generality) RED. Thus each U-vertex of G shoots its W-neighbors. Thus in one
of the two Gy’s in G, it must be the case that each y-vertex shoots its x-neighbors.

Let & ={S,...,S,} denote the set of line segments assigned to the x,’s in this
particular copy of G,. Note that for each non-empty subset 8 < o/ there is a line which
stabs 9%, namely the line which corresponds to the appropriate y-vertex in G,. Thus,
|Z(4)]=2"~1, but by Theorem 2.1, |3(«)|<4(3)+n, which is impossible for
n=7. O

Note that the graph H, the existence of which is described above, can be explicitly
constructed by using the proof in [8]. However, it will be a huge graph, much larger
than the one produced in our second proof.

4. ALGEBRAIC PrOOF oF THEOREM 1.1

This second proof is based on results concerning the sign patterns for polynomials.

Let pi,,...,pm be m real polynomials in [ variables. If xeR’' then
[sgn(p,(x)), . . ., sgn(p,(x))] is the sign pattern of p,, ..., p,, at x. Denote the total
number of sign patterns that consist of +1 terms by s(p;, ..., p,). The following
result is due to Warren [9]. (See also [1] for a similar result with a somewhat different
proof.)

Theorem 4.1. If py, ..., p,, are as above, m =1 and each p; is of degree at most
d=1, then

S(P1y - -+ Pm) < (4edm/l).

Let S, =P, 0, and S, = P,0, be two line segments in the plane with P, = (a;b;) and

L
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0,=(c;, d;) (i=1, 2) the co-ordinates of their end points. Let P, be the following
polynomial of degree 4 in the variables a;, b;, ¢;, d;:

1 a, bl 1 a; bl
PS‘52=det 1 Cq dl 7 1 Cq dl
1 as b2 ]. Cy d2

One can check easily that Pg, <0 iff S$;—S,. Therefore, the segment T-graph
corresponding to the n segments S;, ..., S, is determined by the sign pattern of the
sequence of the 2(3) polynomials {Pgs:i #j}. Note that the number of variables here
is [ = 4n: hence we deduce, from Theorem 4.1,

THEOREM 4.2. The total number of segment T-graphs on n labeled vertices is at most
[4e(n — 1)]*

RemaRk 4.3. The estimate given in Theorem 4.2 holds even if we do not insist that
the line segments in the definition of a segment T-graph be pairwise disjoint.

Furthermore, the estimate given in Theorem 4.2 is sharp, in the sense that the
logarithm of the number of segment T-graphs on n labeled vertices is (1+
0(1))4n log n. Indeed, let m = n/logn and take m vertical and m horizontal segments,
situating above and to the right respectively of the unit square in the plane. Notice that
these define a partition of the unit square into (m — 1) X (m — 1) cells, as shown in
Figure 3. (In addition, there are m more segments which we will place very far to the
‘southwest’ of the unit square. More on this in a moment.) For each of the remaining
n — 3m vertices, we place disjoint, non-collinear segments, each with slope +1, with
end points in the unit square. Observe that for each segment, there are at least cm’
choices for the cells of its end points (for some constant ¢). Further, for each selection
of end point cells, we have determined which of the 2m vertical and horizontal
segments shoot the segment in question. After placing the n — 3m segments, which are
compact, we note that the slope of each can be changed by up to some small amount &,
without disturbing the representation. Finally, we place the last m segments very far to
the ‘southwest’ of the unit square. These segments are disjoint, collinear and have
slope —1. Note that by slight rotation of any of the n — 3m segments with slope +1, we
can have it shoot whichever of the m southwestern segments we choose. Thus, the
number of segment T-graphs on n labeled vertices is bounded below by (cm*)" ™", the

FIGURE 3.
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logarithm of which equals
(n —3m)log(cm®) = (n —3n/log n)(log c + 4 log n — 4 log log n)
=[4+o(1)]n log .

SeconD Proor oF THEOREM 1.1. From Theorem 4.2 we observe that if
2@ > [4e(n — 1)]*"

then there is a graph on n vertices which is not a segment T-graph. This inequality is
clearly satisfied for n large enough (n = 100 will do). O

CoroLLARY 4.4. If
2> [de(n — 1)]*

and G =(V, E) is a graph which contains every graph on n wvertices as an induced
subgraph, then G is not a segment T-graph.

Moon [7] gives an explicit construction of a graph G with O(n2"?) vertices that
contains every graph on » vertices as an induced subgraph. This gives an explicit graph
with fewer than 2% vertices which is not a segment T-graph.

Somewhat larger examples can also be constructed using the main result of [4]. A
distinguished example is the family of Paley graphs. Suppose p =1 (mod 4) is a prime
and let G, denote the graph the vertices of which are all residue classes mod p in which
i and j are adjacent iff { — j is a quadratic residue modulo p. By the main result of [3], if
p >n*2?""2 then G, contains every graph on n vertices as an induced subgraph.

CoroLLARY 4.5. If p >2°® is a prime with p =1 (mod 4), then G, is not a segment
T-graph.

REMARK 4.6. As our second proof is based on a counting argument it implies that
any class of graphs that contain sufficiently many labeled members on n vertices
contains a member which is not a segment T-graph. Thus, for example, for all
sufficiently large n, there is a bipartite 10 000-regular non-segment T-graph on n
vertices with girth at least 10 000. This does not follow from the first proof.
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